Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383417

RESUMO

BACKGROUND: The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate. This has been hindering experimentations with well-established technologies, such as electron microscopy. A deeper understanding of hypnozoite biology could prove essential in the development of radical cure therapeutics against malaria. RESULTS: The liver stages of the rodent parasite Plasmodium berghei, causing non-relapsing malaria, and the simian parasite Plasmodium cynomolgi, causing relapsing malaria, were characterized in human Huh7 cells or primary non-human primate hepatocytes using Correlative Light-Electron Microscopy (CLEM). Specifically, CLEM approaches that rely on GFP-expressing parasites (GFP-CLEM) or on an immunofluorescence assay (IFA-CLEM) were used for imaging liver stages. The results from P. berghei showed that host and parasite organelles can be identified and imaged at high resolution using both CLEM approaches. While IFA-CLEM was associated with more pronounced extraction of cellular content, samples' features were generally well preserved. Using IFA-CLEM, a collection of micrographs was acquired for P. cynomolgi liver stage schizonts and hypnozoites, demonstrating the potential of this approach for characterizing the liver stages of Plasmodium species causing relapsing malaria. CONCLUSIONS: A CLEM approach that does not rely on parasites expressing genetically encoded tags was developed, therefore suitable for imaging the liver stages of Plasmodium species that lack established protocols to perform genetic engineering. This study also provides a dataset that characterizes the ultrastructural features of liver stage schizonts and hypnozoites from the simian parasite species P. cynomolgi.


Assuntos
Malária , Parasitos , Animais , Humanos , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei , Microscopia Eletrônica
2.
J Med Chem ; 63(2): 591-600, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31850752

RESUMO

New drugs that target Plasmodium species, the causative agents of malaria, are needed. The enzyme N-myristoyltransferase (NMT) is an essential protein, which catalyzes the myristoylation of protein substrates, often to mediate membrane targeting. We screened ∼1.8 million small molecules for activity against Plasmodium vivax (P. vivax) NMT. Hits were triaged based on potency and physicochemical properties and further tested against P. vivax and Plasmodium falciparum (P. falciparum) NMTs. We assessed the activity of hits against human NMT1 and NMT2 and discarded compounds with low selectivity indices. We identified 23 chemical classes specific for the inhibition of Plasmodium NMTs over human NMTs, including multiple novel scaffolds. Cocrystallization of P. vivax NMT with one compound revealed peptide binding pocket binding. Other compounds show a range of potential modes of action. Our data provide insight into the activity of a collection of selective inhibitors of Plasmodium NMT and serve as a starting point for subsequent medicinal chemistry efforts.


Assuntos
Aciltransferases/antagonistas & inibidores , Antimaláricos/síntese química , Antimaláricos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Plasmodium/efeitos dos fármacos , Plasmodium/enzimologia , Aciltransferases/química , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Malária/tratamento farmacológico , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
3.
Artigo em Inglês | MEDLINE | ID: mdl-30547015

RESUMO

Within the liver, Plasmodium sporozoites traverse cells searching for a "suitable" hepatocyte, invading these cells through a process that results in the formation of a parasitophorous vacuole (PV), within which the parasite undergoes intracellular replication as a liver stage. It was previously established that two members of the Plasmodium s48/45 protein family, P36 and P52, are essential for productive invasion of host hepatocytes by sporozoites as their simultaneous deletion results in growth-arrested parasites that lack a PV. Recent studies point toward a pathway of entry possibly involving the interaction of P36 with hepatocyte receptors EphA2, CD81, and SR-B1. However, the relationship between P36 and P52 during sporozoite invasion remains unknown. Here we show that parasites with a single P52 or P36 gene deletion each lack a PV after hepatocyte invasion, thereby pheno-copying the lack of a PV observed for the P52/P36 dual gene deletion parasite line. This indicates that both proteins are equally important in the establishment of a PV and act in the same pathway. We created a Plasmodium yoelii P36mCherry tagged parasite line that allowed us to visualize the subcellular localization of P36 and found that it partially co-localizes with P52 in the sporozoite secretory microneme organelles. Furthermore, through co-immunoprecipitation studies in vivo, we determined that P36 and P52 form a protein complex in sporozoites, indicating a concerted function for both proteins within the PV formation pathway. However, upon sporozoite stimulation, only P36 was released as a secreted protein while P52 was not. Our results support a model in which the putatively glycosylphosphatidylinositol (GPI)-anchored P52 may serve as a scaffold to facilitate the interaction of secreted P36 with the host cell during sporozoite invasion of hepatocytes.


Assuntos
Hepatócitos/parasitologia , Malária/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Antígenos CD36/metabolismo , Culicidae , Citoplasma/metabolismo , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Glicosilfosfatidilinositóis , Hepatócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/metabolismo , Receptor EphA2/metabolismo , Glândulas Salivares/parasitologia , Glândulas Salivares/patologia
4.
PLoS Pathog ; 12(4): e1005606, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27128092

RESUMO

Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens.


Assuntos
Malária Falciparum/metabolismo , Proteômica/métodos , Proteínas de Protozoários/análise , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Culicidae , Imunofluorescência , Glicosilação , Espectrometria de Massas , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Organismos Geneticamente Modificados , Esporozoítos/química
5.
Infect Immun ; 82(11): 4643-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156733

RESUMO

Plasmodium sporozoites develop within oocysts in the mosquito midgut wall and then migrate to the salivary glands. After transmission, they embark on a complex journey to the mammalian liver, where they infect hepatocytes. Proteins on the sporozoite surface likely mediate multiple steps of this journey, yet only a few sporozoite surface proteins have been described. Here, we characterize a novel, conserved sporozoite surface protein (SSP3) in the rodent malaria parasite Plasmodium yoelii. SSP3 is a putative type I transmembrane protein unique to Plasmodium. By using epitope tagging and SSP3-specific antibodies in conjunction with immunofluorescence microscopy, we showed that SSP3 is expressed in mosquito midgut oocyst sporozoites, exhibiting an intracellular localization. In sporozoites derived from the mosquito salivary glands, however, SSP3 localized predominantly to the sporozoite surface as determined by immunoelectron microscopy. However, the ectodomain of SSP3 appeared to be inaccessible to antibodies in nonpermeabilized salivary gland sporozoites. Antibody-induced shedding of the major surface protein circumsporozoite protein (CSP) exposed the SSP3 ectodomain to antibodies in some sporozoites. Targeted deletion of SSP3 adversely affected in vitro sporozoite gliding motility, which, surprisingly, impacted neither their cell traversal capacity, host cell invasion in vitro, nor infectivity in vivo. Together, these data reveal a previously unappreciated complexity of the Plasmodium sporozoite surface proteome and the roles of surface proteins in distinct biological activities of sporozoites.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Anticorpos Antiprotozoários , Epitopos , Feminino , Deleção de Genes , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Movimento , Plasmodium yoelii/genética , Transporte Proteico , Proteínas de Protozoários/genética
6.
Mol Ther ; 22(9): 1707-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24827907

RESUMO

Immunization with live-attenuated Plasmodium sporozoites completely protects against malaria infection. Genetic engineering offers a versatile platform to create live-attenuated sporozoite vaccine candidates. We previously generated a genetically attenuated parasite (GAP) by deleting the P52 and P36 genes in the NF54 wild-type (WT) strain of Plasmodium falciparum (Pf p52(-)/p36(-) GAP). Preclinical assessment of p52(-)/p36(-) GAP in a humanized mouse model indicated an early and severe liver stage growth defect. However, human exposure to >200 Pf p52(-)/p36(-) GAP-infected mosquito bites in a safety trial resulted in peripheral parasitemia in one of six volunteers, revealing that this GAP was incompletely attenuated. We have now created a triple gene deleted GAP by additionally removing the SAP1 gene (Pf p52(-)/p36(-)/sap1(-) GAP) and employed flippase (FLP)/flippase recognition target (FRT) recombination for drug selectable marker cassette removal. This next-generation GAP was indistinguishable from WT parasites in blood stage and mosquito stage development. Using an improved humanized mouse model transplanted with human hepatocytes and human red blood cells, we show that despite a high-dose sporozoite challenge, Pf p52(-)/p36(-)/sap1(-) GAP did not transition to blood stage infection and appeared to be completely attenuated. Thus, clinical testing of Pf p52(-)/p36(-)/sap1(-) GAP assessing safety, immunogenicity, and efficacy against sporozoite challenge is warranted.


Assuntos
Anopheles/parasitologia , Malária Falciparum/sangue , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Animais , Modelos Animais de Doenças , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Malária Falciparum/parasitologia , Vacinas Atenuadas/genética
7.
Mol Microbiol ; 91(4): 679-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330260

RESUMO

Malaria parasites scavenge nutrients from their host but also harbour enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver-stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbour genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic acid synthesis. Our research shows that apicoplast-targeted Plasmodium yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver-stage development and deletion of the encoding genes resulted in late liver-stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite life cycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver-stage maturation.


Assuntos
Fígado/parasitologia , Ácidos Fosfatídicos/biossíntese , Plasmodium yoelii/enzimologia , Plasmodium yoelii/fisiologia , Plastídeos/enzimologia , Plastídeos/metabolismo , Aciltransferases/metabolismo , Animais , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Camundongos , Plasmodium yoelii/metabolismo , Transporte Proteico
8.
PLoS One ; 8(4): e60820, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593316

RESUMO

The liver stages of Plasmodium parasites are important targets for the development of anti-malarial vaccine candidates and chemoprophylaxis approaches that aim to prevent clinical infection. Analyzing the impact of interventions on liver stages in the murine malaria model system Plasmodium yoelii has been cumbersome and requires terminal procedures. In vivo imaging of bioluminescent parasites has previously been shown to be an effective and non-invasive alternative to monitoring liver stage burden in the Plasmodium berghei model. Here we report the generation and characterization of a transgenic P. yoelii parasite expressing the reporter protein luciferase throughout the parasite life cycle. In vivo bioluminescent imaging of these parasites allows for quantitative analysis of P. yoelii liver stage burden and parasite development, which is comparable to quantitative RT-PCR analysis of liver infection. Using this system, we show that both BALB/cJ and C57BL/6 mice show comparable susceptibility to P. yoelii infection with sporozoites and that bioluminescent imaging can be used to monitor protective efficacy of attenuated parasite immunizations. Thus, this rapid, simple and noninvasive method for monitoring P. yoelii infection in the liver provides an efficient system to screen and evaluate the effects of anti-malarial interventions in vivo and in real-time.


Assuntos
Diagnóstico por Imagem/métodos , Fígado/virologia , Luciferases/metabolismo , Malária/parasitologia , Organismos Geneticamente Modificados/genética , Plasmodium yoelii/genética , Animais , Imunização , Estimativa de Kaplan-Meier , Medições Luminescentes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium yoelii/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Mol Cell Proteomics ; 12(5): 1127-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23325771

RESUMO

Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage of infection.


Assuntos
Anopheles/parasitologia , Insetos Vetores/parasitologia , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Glândulas Salivares/parasitologia , Esporozoítos/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Eritrócitos/parasitologia , Feminino , Interações Hospedeiro-Parasita , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Camundongos , Plasmodium falciparum/metabolismo , Plasmodium yoelii/metabolismo , Proteoma/isolamento & purificação , Proteômica , Proteínas de Protozoários/isolamento & purificação , Via Secretória
10.
Infect Immun ; 80(4): 1399-407, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252874

RESUMO

Mammalian macrophage migration inhibitory factor (MIF) is a multifaceted cytokine involved in both extracellular and intracellular functions. Malaria parasites express a MIF homologue that might modulate host immune responses against blood-stage parasites, but the potential importance of MIF against other life cycle stages remains unstudied. In this study, we characterized the MIF homologue of Plasmodium yoelii throughout the life cycle, with emphasis on preerythrocytic stages. P. yoelii MIF (Py-MIF) was expressed in blood-stage parasites and detected at low levels in mosquito salivary gland sporozoites. MIF expression was strong throughout liver-stage development and localized to the cytoplasm of the parasite, with no evidence of release into the host hepatocyte. To examine the importance of Py-MIF for liver-stage development, we generated a Py-mif knockout parasite (P. yoelii Δmif). P. yoelii Δmif parasites grew normally as asexual erythrocytic-stage parasites and showed normal infection of mosquitoes. In contrast, the P. yoelii Δmif strain was attenuated during the liver stage. Mice infected with P. yoelii Δmif sporozoites either did not develop blood-stage parasitemia or exhibited a delay in the onset of blood-stage patency. Furthermore, P. yoelii Δmif parasites exhibited growth retardation in vivo. Combined, the data indicate that Plasmodium MIF is important for liver-stage development of P. yoelii, during which it is likely to play an intrinsic role in parasite development rather than modulating host immune responses to infection.


Assuntos
Fígado/parasitologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Malária/parasitologia , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Anopheles/parasitologia , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Fatores Inibidores da Migração de Macrófagos/biossíntese , Fatores Inibidores da Migração de Macrófagos/genética , Malária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/genética , Plasmodium yoelii/crescimento & desenvolvimento , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Glândulas Salivares/parasitologia , Esporozoítos/crescimento & desenvolvimento
11.
Infect Immun ; 75(8): 3758-68, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17517871

RESUMO

Malaria infection starts when sporozoites are transmitted to the mammalian host during a mosquito bite. Sporozoites enter the blood circulation, reach the liver, and infect hepatocytes. The formation of a parasitophorous vacuole (PV) establishes their intracellular niche. Recently, two members of the 6-Cys domain protein family, P52 and P36, were each shown to play an important albeit nonessential role in Plasmodium berghei sporozoite infectivity for the rodent host. Here, we generated p52/p36-deficient Plasmodium yoelii parasites by the simultaneous deletion of both genes using a single genetic manipulation. p52/p36-deficient parasites exhibited normal progression through the life cycle during blood-stage infection, transmission to mosquitoes, mosquito-stage development, and sporozoite infection of the salivary glands. p52/p36-deficient sporozoites also showed normal motility and cell traversal activity. However, immunofluorescence analysis and electron microscopic observations revealed that p52/p36-deficient parasites did not form a PV within hepatocytes in vitro and in vivo. The p52/p36-deficient parasites localized as free entities in the host cell cytoplasm or the host cell nucleoplasm and did not develop as liver stages. Consequently, they did not cause blood-stage infections even at high sporozoite inoculation doses. Mice immunized with p52/p36-deficient sporozoites were completely protected against infectious sporozoite challenge. Our results demonstrate for the first time the generation of two-locus gene deletion-attenuated parasites that infect the liver but do not progress to blood-stage infection. The study will critically guide the design of Plasmodium falciparum live attenuated malaria vaccines.


Assuntos
Malária/prevenção & controle , Plasmodium yoelii/imunologia , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/genética , Esporozoítos/imunologia , Animais , Culicidae/parasitologia , Citoplasma/parasitologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Marcação de Genes , Hepatócitos/parasitologia , Hepatócitos/ultraestrutura , Malária/imunologia , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Plasmodium yoelii/genética , Plasmodium yoelii/crescimento & desenvolvimento , Proteínas de Protozoários/imunologia , Ratos , Ratos Wistar , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...